News
合成生物学将催生下一次生物技术革命。
目前,科学家们已经不局限于非常辛苦地进行基因剪接,而是开始构建遗传密码,以期利用合成的遗传因子构建新的生物体。合成生物学在未来几年有望取得迅速进展。
据估计,合成生物学在很多领域将具有极好的应用前景,这些领域包括更有效的疫苗的生产、新药和改进的药物、以生物学为基础的制造、利用可再生能源生产可持续能源、环境污染的生物治理、可以检测有毒化学物质的生物传感器等。
尽管合成生物学的商业应用多数还要几年以后才能实现,但研究人员已经在利用合成生物体来研制下一代清洁的可再生生物燃料以及某些稀缺的药物。第一代合成微生物是合成生物学的简单应用,它们可能与利用DNA重组的微生物类似,其风险评估或许不成问题,因此,对立法者的挑战较少。
随着合成生物学技术不断走向成熟,又可能研制出复杂的有机体,其基因组可能由各种基因序列(包括实验室设计和研制的人工基因序列)重组而成。尽管其风险和风险评估问题与经过基因修饰的生物体引发的问题类似,但对于这类复杂的合成微生物来说,找到上述问题的答案要困难得多。
在转基因生物技术方面,立法者对转基因生物体进行风险评估时,一般是通过将转基因生物体与为人们所熟知的同类的非转基因生物进行比较分析,从而认识增加的遗传物质的功能。立法者通过将自然存在的物种与转基因物种进行比较,来确保新的有机体像其传统的同类物质“一样安全”。
但是,对于通过合成生物学制成的复杂的有机体而言,如果它是由各种来源的遗传序列组合而成或者含有人工DNA,就很难确定其“遗传谱系”。
另外,重组后的遗传序列是否保留其原有的功能,或者新组分之间是否会产生协同反应从而导致不同的功能或行为也是个问题。
随着对有关遗传成分的认识的增加,科学家们也许可以预测新的遗传改造所具有的功能,但是,由来自合成和自然物质的遗传成分合成的有机体可能会表现出原来没有过的“新行为”。先进的合成微生物的复杂性给根据遗传序列和结构进行功能预测增加了新的不确定性。现有的风险评估方法无法用来预测复杂的适应系统。此外,尽管许多科学家认为转基因生物体在自然环境中可能无法生存或繁殖,但合成有机体可以发生变异和进化,这引起了人们的担忧,担心它们如果释放到环境中,其遗传物质可能扩散到其它有机体,或者与其它有机体交换遗传物质。这种风险同样与转基因生物引发的风险类似,只是要预先评估将来开发的复杂的合成生物体的风险更为困难。
合成生物学无疑会推动生物燃料、特种化学品、农业和药物等方面的进步。但这个新兴领域的进一步发展对政府的监管提出了严峻挑战。科学家们已经开始关注合成生物学研究的风险问题。最受关注的莫过于生物安全问题。合成生物学的早期应用引发的安全性问题应予以重视。
像其它新技术一样,合成生物学对决策者提出了挑战。政府在制定政策时必须做出权衡,一方面是如何收获新产品的利益,另一方面是如何预防对环境和公共健康的潜在危害。目前,人们普遍认为,针对遗传工程制定的政策和法规是制定面向合成生物学的政策法规时可以效仿的。在这项新技术成熟之前,决策者应考虑如何对这项新兴的融合技术进行约束。
由于合成生物学的不确定性,立法者面临的挑战是如何制定决策,使对合成生物体的管制既不能过松,也不能过严。因此,亟需在产品开发的同时开展风险研究。毋庸置疑,一般性研究是很有用的,但很多情况下,必须针对具体的生物体、产品和应用进行风险研究。
发展的重要性